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Abstract—This paper proposes an optimisation-based con-
troller for speed regulation of permanent magnet synchronous
motor (PMSM) with the safety guarantee on both the current and
voltage in the presence of multiple disturbances. A comprehensive
disturbance observer (DOB) is designed to estimate the multiple
disturbances in PMSM system. By integrating the estimation
and future behavior of disturbances into the prediction horizon,
an offset-free predictive control law is obtained by solving a
constrained optimization problem. Analysis in frequency domain
and experimental studies both show that the proposed control
approach achieves higher tracking performance with better
disturbance rejection.

Index Terms—Permanent magnet synchronous motor (PMSM),
speed regulation, model predictive control (MPC), multiple dis-
turbances, disturbance observer (DOB).

I. INTRODUCTION

PERMANENT magnet synchronous motor (PMSM) has
been widely applied in highly dynamical and high-

precision applications such as traction drives, electric power
steering systems, and machine tools due to its high power
density, high efficiency and simple structure [1]. However,
the existence of uncertainties and disturbances (e.g., un-
modeled dynamics, parameter variation, friction force, and
load disturbances) results in the difficulty to achieve high
control performance in PMSM servo systems and poses the
challenge to the traditional control methods, e.g., propor-
tional–integral–derivative (PID) [2].

As one of the advanced control technologies, model predic-
tive control (MPC) is an optimisation-based control strategy
which handles variable constraints and ensures the desirable
control performance [3]. The main idea of MPC is fully
exploiting the model dynamics to predict the future states,
and determining the most suitable control action for this
moment by solving a finite horizon optimal control problem
[4]. However, the industrial applications of the MPC method
to some extent were restricted due to the real-time requirement
by the online optimization during a long time. In recent years,
with the rapid development of hardware and computation,
MPC has attracted a great deal of attentions in power elec-
tronic system [5], autonomous vehicle system [6]. Besides,
MPC methods have been successfully applied to PMSM servo
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systems due to the safety guarantee on current and voltage and
the improvement of the control performance [7].

In spite of the promising features and fruitful results on
application of MPC to PMSM servo systems, similar to most
of the other advanced feedback control methods, MPC usually
asymptotically suppresses the disturbances and uncertainties
through a manner of feedback regulation in a relatively slow
way [8]. Therefore, disturbance rejection strategies such as
DOB or integral control action are introduced into MPC to
enhance the disturbance rejection performance of MPC. In [9],
by regarding the external disturbance and uncertain parameters
in real time as the lumped disturbance, a DOB is designed to
obtain the estimation of lumped disturbance and the estimation
is embedded into the output prediction to achieve speed reg-
ulation and enhance the disturbance rejection in PMSM servo
systems. For reducing the speed drop caused by the load torque
disturbance, a MPC controller employing integral action is
designed to realize zero steady-state error in [10]. Those MPC
strategies successfully achieve high performance by regarding
disturbances as constant disturbances in the prediction horizon.
However, such a treatment is hard to handle disturbances with
the dynamic property of higher-order time varying during the
wide range operation of the PMSM. Therefore, in order to
suppress time-varying disturbances, a reduced-order general-
ized proportional integral observer (GPIO) is developed to
estimate and predict the higher-order time-varying disturbance
in PMSM servo systems, and the future behavior of time-
varying disturbances is embedded into the output prediction
[11].

The above-mentioned MPC control methods only deal with
one or two types of disturbances, but multiple disturbances in
PMSM servo systems are not considered in most of the exist-
ing MPC strategies. In practical PMSM servo systems, multi-
ple disturbances such as current measurement error effect [12],
dead-time effect [13] and cogging torque [14] always bring
undesirable influences on the closed-loop control performance,
and those disturbances are not considered in [10] and [9].
To realize multiple disturbances rejection, a robust controller
with comprehensive disturbance observer is proposed in [15],
which achieves precise control performance by simultaneously
and accurately estimating the multiple disturbances. In [16], a
cascaded MPC scheme is developed to solve the problem of
reducing the impact of periodic disturbances arising from the



current sensor offset error on the speed control of PMSM. It is
worth noting that the multiple disturbances rejection strategy
proposed in [15] motivates this work.

In this paper, by using multiple disturbance estimation
technique, an offset-free MPC considering the model of mul-
tiple disturbances is proposed to address the speed regulation
problem of PMSM servo systems. A comprehensive distur-
bance observer is designed to estimate multiple disturbances
including current measurement error effect, dead-time effect
and cogging torque. Quite different from the most of the
existing offset-free MPC methods, multiple disturbances are
estimated and predicted in the horizon, which significantly
improve the prediction accuracy and dynamic performance of
PMSM servo systems. Besides, it has been proven that the
steady-state error converges to zero in steady state, with the
Bode plots to illustrate the valid rejection for disturbances
with specific frequencies. Finally, experimental results show
the advantages of the proposed control approach.

II. PMSM MODEL WITH MULTIPLE DISTURBANCES

According to [15], a discrete-time model of PMSM in the
presence of multiple disturbances by using the forward Euler
discretization method is given as follows:{

ĩq(t+ 1) = h1ĩq(t) + g1ω(t) + Tspũq(t) + Tsdq(t)

ω(t+ 1) = h2ĩq(t) + g2ω(t) + Tsdω(t)
(1)

where h1 , 1−TsRs

Lq
, h2 , 3Tsnpψf

2J , g1 , −Tsnpψf

Lq
, g2 , 1−

TsBv

J , p , 1
Lq

; Ts is the sampling time and t is the time index;
ĩq is q-axis current obtained from the measured phase current;
ũq is the output voltage of the controller; Lq is q-axis stator
inductance, respectively; Rs is the stator resistance; ψf is the
magnetic flux linkage; J is the rotor inertia; np is the number
of pole pairs; Bv is the viscous frictional coefficient; ω is the
rotor angular velocity; dq and dω are the lumped disturbances
of the current loop and the speed loop, respectively, which are
given by:

dq(t) , a1 cos(θe + α) + a2 cos(2θe + β)

+ b1 cos(6θe) + σq

dω(t) , a3 cos(θe + α) + a4 cos(2θe + β)

+ b2 cos(Pθm + ϕ1) + σω

(2)

where a1, a2, a3 and a4 are coefficients related to current
measurement error effects; b1 and b2 are coefficients related
to dead-time effect and cooging torque, respectively; α and
β are the constant angular displacements; θe is the electrical
angle; θm is the mechanical angular position of the rotor
which is expressed as θm = θe/np, σq and σω are the
lumped effects of parametric perturbation and other unmodeled
disturbances/uncertainties in the current loop and the speed
loop, respectively.

Remark 1. If PMSM is approximately running at a constant
speed (ω=ω∗) in the steady state, the electrical angle θe will
approximately equal npω∗Tst + αω where αω is a constant
angular displacement.

III. CONTROLLER STRATEGY

A. Disturbance Observer Design

In this section, a disturbance observer is utilized to estimate
multiple disturbances in current loop and speed loop.

By defining ε1c , cos(npω
∗Ts), ε1s , sin(npω

∗Ts), ε2c ,
cos(2npω

∗Ts), ε2s , sin(2npω
∗Ts), ε3c , cos(6npω

∗Ts),
ε3s , sin(6npω

∗Ts), ε4c , cos(Pω∗Ts), ε4s , sin(Pω∗Ts),
u(t) , ũq(t), x1(t) , ĩq(t), x2(t) , ω(t), x3(t) ,
a1 cos(θe +α), x4(t) , a1 sin(θe +α), x5(t) , a2 cos(2θe +
β), x6(t) , a2 sin(2θe + β), x7(t) , b1 cos(6θe), x8(t) ,
b1 sin(6θe), x9(t) , σq , x10(t) , a3 cos(θe + α), x11(t) ,
a3 sin(θe + α), x12(t) , a4 cos(2θe + β), x13(t) ,
a4 sin(2θe + β), x14(t) , b2 cos(Pθm + ϕ1), x15(t) ,
b2 sin(Pθm + ϕ1), x16(t) , σω , an extended system of (1)
is represented as follows:
[
xm(t+ 1)
X(t+ 1)

]
=

[
A BdCd

014×2 Ad

] [
xm(t)
X(t)

]
+

[
B

014×1

]
u(t)

d(t) = CdX(t)

y(t) = Cxm(t)
(3)

where d(t) ,
[
dq(t) dω(t)

]T
, xm(t) ,

[
x1(t) x2(t)

]T
,

X(t) ,
[
x3(t) x4(t) · · · x16(t)

]T
, y(t) , ω(t) and

matrices are defined as follows:

A =

[
1− TsRs

Lq
−Tsnpψf

Lq
3Tsnpψf

2J 1− TsBv

J

]
Ad = blkdiag(Ad1, Ad2, Ad3, 1, Ad1, Ad2, Ad4, 1)

Adi =

[
εic −εis
εis εic

]
, (i = 1, 2, 3, 4), B =

[
Ts

Lq
0
]T

Bd =

[
Ts 0
0 Ts

]
, Cd =

[
ρ 01×7

01×7 ρ

]
ρ =

[
1 0 1 0 1 0 1

]
, C =

[
0 1

]
Then, the DOB for system (1) is designed as follows:

[
x̂m(t+ 1)

X̂(t+ 1)

]
=

[
A BdCd

014×2 Ad

] [
x̂m(t)

X̂(t)

]
+

[
B

014×1

]
u(t)

+

[
Lx
Ld

]
(xm(t)− x̂m(t))

d̂(t) = CdX̂(t)
(4)

where Lx and Ld are observer gains.

B. MPC Design with Disturbance Estimation

Embedding disturbance information into the prediction
model is critical for the MPC design for PMSM in the
presence of multiple disturbances. Besides, inspired by the
output regulation theory, a compact approach is adopted here
to consider both the disturbance state and reference, which
will be specifically deduced in Sec. III-C.



In this subsection, the overall MPC algorithm is first pre-
sented as follows:

min
u0,··· ,uN−1

‖xN − x̄N‖2F +

N−1∑
k=0

‖xk − x̄k‖2Q + ‖uk − ūk‖2R

(5a)
s.t. Ξxxk + Ξuuk ≤ Υ (5b)

xk+1 = Axk +Buk +Bddk (5c)
zk+1 = Szk (5d)
dk = CdMdzk (5e)
x̄k = Πzk (5f)
ūk = Γzk, k = 0, 1, · · · , N (5g)
x0 = x̂m(t) (5h)

z0 =
[
X̂(t)

T
r(t)

]T
(5i)

where r(t) is the reference for speed; x, z and d with
subscripts are the variables in horizon; x̄k and ūk are the
desired state and input, and the matrix pair (Π,Γ) is the
solution of the following algebraic equation:

ΠS = AΠ +BΓ +BdCdMd (6a)
0 = CΠ−Mr (6b)

and S , blkdiag(Ad, 1), Md ,
[
I14×14 014×1

]
, Mr ,[

014×14 114×1
]
, I14×14 is an unit matrix and 114×1 is a

column vector whose elements are all 1; Ξx, Ξu and Υ
describe the safety requirement, given by:

Ξx ,

[
1 0 −1 0
0 0 0 0

]T
, Ξu ,

[
0 1 0 −1

]T
Υ ,

[
iqmax ũqmax −iqmax −ũqmax

]T
and Q > 0 and R ≥ 0 are the weightings on tracking and
control, respectively; F is the terminal weighting, which is
the solution of the following Riccati equation

F = ATFA−ATFB(BTFB +R)−1BTFA+Q (7)

It is worth noting that the real-time estimates of both PMSM
and disturbance states are embedded in the prediction horizon
by acting as the initial states, i.e., (5h) and (5i).

The optimal solution to the optimization problem (5) is
denoted as:

U∗(t) ,
{
u∗0, u

∗
1, · · · , u∗N−1

}
(8)

where the first action u∗0 is utilized to PMSM as the current
voltage, that is

u(t) = u∗0 (9)

At next time, the initial state variable will be updated. Then,
the optimization problem (5) is repeated to obtain an optimal
voltage.

C. Analysis on Steady-State Error

In what follows, a theoretical analysis on the steady-state
error of the PMSM servo system with the appropriate compen-
sation for the multiple disturbance when tracking a constant
reference (r(t) = ω∗) is given.

Theorem 1. Suppose that the MPC problem (5) is always
feasible and constraint (5b) is always inactive. Then the steady-
state error tends to zero, that is, lim

t→∞
y(t) = ω∗.

Proof. Estimation dynamics is analysed first. By defining
eob(t) ,

[
xm(t)T X(t)T

]T−[x̂m(t)T X̂(t)T
]T

, eob(t+1)
can be derived from (3) and (4) as follows:

eob(t+ 1) =

[
A BdCd

014×2 Ad

]
eob(t)−

[
Lx
Ld

]
[xm(t)− x̂m(t)]

= Θobeob(t)
(10)

where
Θob ,

[
A− Lx BdCd
−Ld Ad

]
It is worth nothing that Lx and Ld can be chosen properly

to guarantee the asymptotic convergence of (10) since system
(3) is observable.

Tracking dynamics is then able to be deduced. Right mul-
tiplying (6a) by zk, one obtains

x̄k+1 = Ax̄k+Būk+BdCdMdzk = Ax̄k+Būk+Bddk (11)

According to (5c), (5e) and (11), one obtains δxk+1 =
Aδxk + Bδuk where δxk , xk − x̄k, δuk , uk − ūk.
Considering the assumption on inactive constraints and letting
δuk as the new decision variable, the MPC problem (5) can
be simplified as follows:

min
δu0,··· ,δuN−1

‖δxN‖2F +

N−1∑
k=0

‖δxk‖2Q + ‖δuk‖2R

s.t. δxk+1 = Aδxk +Bδuk, k = 0, 1, · · · , N
δx0 = x̂m(t)− x̄0

(12)

Based on the classical optimal control theory, the controller
(12) can be explicitly computed as

δu∗0 = KMPCδx0 ⇔ u(t) = KMPC(x̂m(t)− x̄0) + ū0 (13)

where KMPC , (R+BTFB)−1BTFA. Taking the con-
troller (13) into the extended system (3) will get

xm(t+ 1) = Axm(t) +BKMPC(x̂m(t)− x̄0)

+Bū0 +BdCdMdz(t)
(14)

where z(t) ,
[
X(t)

T
r(t)

]T
.

By defining etr(t) , xm(t) − Πz(t), eob1(t) , xm(t) −
x̂m(t), eob2(t) , X(t)− X̂(t) and keeping (6a) in mind, then
etr(t+ 1) is computed as:

etr(t+ 1) = Θtretr(t)−BKMPCeob1(t)

+ (BKMPCΠ−BΓ)Λeob2
(15)



where Θtr , A + BKMPC and Λ ,
[
I14×14 014×1

]T
. By

(10) and (15), one obtains[
etr(t+ 1)
eob(t+ 1)

]
=

[
Θtr ?

016×2 Θob

] [
etr(t)
eob(t)

]
(16)

where ? is a constant matrix. Noting that Θtr is Hurwitz due
to the Riccati equation (7), the closed-loop system (16) is
asymptotically stable, which implies that lim

t→∞
etr(t) = 0 ⇒

lim
t→∞

y(t) = ω∗. This completes the proof.

IV. FREQUENCY-DOMAIN ANALYSIS FOR DISTURBANCE
ESTIMATION AND REJECTION

Frequency-domain analysis for the proposed controller is
significant to show the effectiveness of the estimation and
rejection for disturbances mentioned in Section II. In what
follows, frequency-domain analysis of the disturbances in the
current and speed channels are proposed.

To show the disturbance estimation performance, the esti-
mation transfer function from dq to eq = dq − d̂q and from
dω to eω = dω − d̂ω are defined as:

Gq(z) ,
dq(z)− d̂q(z)

dq(z)
, Gω(z) ,

dω(z)− d̂ω(z)

dω(z)
(17)

Then the Bode plots of current-loop disturbance estima-
tion error Gq(z) and speed-loop disturbance estimation error
Gω(z) with different ω∗ are shown in Fig. 1 and Fig. 2,
respectively. Table I shows the specific frequencies of multiple
disturbances at different desired speeds. As shown in Fig. 1,
the disturbance estimation errors of current measurement error
and dead time effect decrease obviously at specific frequen-
cies, which indicates that the DOB estimates the multiple
disturbances precisely. Besides, it can be shown in Fig. 2,
that the disturbance caused by cogging torque and current
measurement error can be estimated with accuracy.

Fig. 1. Bode plots of disturbance estimation error in current loop with
different ω∗.

Fig. 2. Bode plots of disturbance estimation error in speed loop with different
ω∗.

TABLE I
SPECIFIC FREQUENCIES OF MULTIPLE DISTURBANCES UNDER DIFFERENT

SPEEDS

Desired speed Offset error Scaling error Dead time effect Cogging torque
200rpm 13.3Hz 26.7Hz 80Hz 107Hz
500rpm 33.3Hz 66.7Hz 200Hz 267Hz

1000rpm 66.7Hz 133Hz 400Hz 534Hz

To study the performance of disturbance rejection, the
transfer functions from dq and dω , respectively, to the tracking
error ω∗ − ω are defined as:

Geq(z) ,
ω∗(z)− ω(z)

dq(z)
, Geω(z) ,

ω∗(z)− ω(z)

dω(z)
(18)

where the desired speed is set as 500rpm. Then the Bode plots
of transfer functions in (18) with different Q : R and different
observer poles are shown in Fig. 3-6. As shown in Fig. 3
and Fig. 4, the tracking error deceases at specific frequencies
(33.3Hz, 66.6Hz, 200Hz and 267Hz) with the increase of Q :
R when the observer poles are all placed at -50. It can be
shown in Fig. 5 and Fig. 6 that the tracking error is getting
smaller with larger observer poles when Q : R is set as 100I .

Q R I
Q:R=200I
Q:R=300I

Q R I
Q:R=200I
Q:R=300I

Fig. 3. Bode plots of tracking error in current loop with different Q : R.

Q R I
Q:R=200I
Q:R=300I

Q R I
Q:R=200I
Q:R=300I

Fig. 4. Bode plots of tracking error in speed loop with different Q : R.

Fig. 5. Bode plots of tracking error in current loop with different poles of
observer.

V. EXPERIMENT STUDIES

In this section, the disturbance observer based MPC method
is to be validated by experimental studies. The experimental



Fig. 6. Bode plots of tracking error in speed loop with different poles of
observer.

setup is shown in Fig. 7(a), and its configuration is given in
Fig. 7(b). The experimental setup consists of a host PC, a load
adjusting device, a PMSM and an integrated controller board.
The integrated controller board includes dual processor and a
DSP (TMS320F28335) motion control board.
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Fig. 7. Experimental system: (a) setup. (b) configuration.

The parameters of the PMSM are as follows: number of
pole pairs np = 4, number of slots P = 32, rotor flux linkage
ψf = 0.0192Wb, stator inductances Ld, Lq = 0.4mH, stator
resistance Rs = 0.72Ω, rotor inertia J = 7.06× 10−4kg ·m2,
and viscous friction coefficient Bv = 3.5× 10−4N ·m · s/rad.
The current constraint is 10A. The setting value of speed is
given as 500rpm, and the sampling period Ts is 0.1ms. The
controller parameters of MPC are given as N = 5, R = 0.01,
Q = 500I where I is identity matrix. The parameters of DOB
are designed by using the “place” instruction in MATLAB.
Eigenvalues of (4) are placed at -500 for tuning simplicity.

A. Nominal Control Performance

In this case, the nominal control performance of three
controllers are tested with multiple disturbances.

It is worth noting that the current measurement error effects
are much larger than dead-time effect and cogging torque
in this experimental device, therefore the proposed control
strategy mainly rejects the current measurement error effects.

As shown in Fig. 8, the MPC+ESO and PID have much
more fluctuations in the steady state under multiple distur-
bances. It is observed in Fig. 9 that the proposed MPC+DOB is
well tuned to behave satisfactory nominal control performance
while satisfying the current constraint in the whole regulation
process. The amplitude spectra of tracking error is shown in
Fig. 10. It can be seen that the multiple disturbances (33.333Hz

and 66.666Hz while motor speed is 500rpm) of the system
with MPC+DOB are suppressed to a large extent.
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Fig. 8. Speed response at a desired speeds of 500rpm.
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Detailed quantitative data for performance comparisons of
three cases are given in Table II. It can be observed from Table
II that fluctuations on the speed curves of PID are relatively
larger than those of MPC+ESO and MPC+DOB. The effects
of disturbances can be completely attenuated if and only if
the internal models of disturbances are incorporated into the
controller design. This indicates that the PID controller can
only remove the offset caused by constant/step disturbances
since the integral action serves as the internal model of this
kind disturbances.

TABLE II
DYNAMIC-STATE AND STEADY-STATE PERFORMANCES

Index PID MPC+ESO MPC+DOB
Overshoot (%) 0.86 0.29 0.09
Settling time (s) 0.11 0.10 0.09
Offset error (r/min) 0.01 0.00 0.00
Fluctuation (r/min) 0.59 0.29 0.12
Fluctuation (%) 0.12 0.06 0.02

B. Robustness Against Step Load Torque
The robustness against step load torque TL = 0.4N ·m

while the desired speed is given by 500rpm is respectively
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Fig. 10. Amplitude spectra of steady-state tracking error at a desired speeds
of 500rpm.

tested in this case. The step load torque is applied at 3s.
MPC+DOB, MPC+ESO and PID are compared in this case.

Fig. 11 are speed responses under load torque. As shown
in Fig. 11, MPC+DOB has the smallest maximum angular
velocity drop compared with MPC+ESO and PID.

More detailed quantitative performance index comparisons
of PID, MPC+ESO and MPC+DOB are provided in Table III.
It can be observed from Table III that the speed drop of PID
are relatively larger than those of MPC+ESO and MPC+DOB.
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Fig. 11. Speed response with load torque at a desired speeds of 500rpm.

TABLE III
DISTURBANCE REJECTION PERFORMANCES AGAINST LOAD TORQUES

Index PID MPC+ESO MPC+DOB
Decrease (r/min) 4.91 0.42 0.13
Recovery time (s) 0.50 0.43 0.38
Offset Error (r/min) 0.02 0.01 0.00
Fluctuation (r/min) 0.77 0.43 0.16
Fluctuation (%) 0.15 0.09 0.03

VI. CONCLUSION

In this paper, a DOB based MPC method has been proposed
to achieve high control performance of PMSM servo systems

in the presence of multiple disturbances as well as overcurrent
protection. A DOB has been designed to estimate multiple
disturbances, which is fully exploited during the prediction
horizon to substantially improve the prediction accuracy. Then,
a MPC with the disturbance estimate based prediction cor-
rection has been designed. The proposed control method has
taken current and voltage constraints into account, and at
the same time, reacts swiftly to reject multiple disturbances.
The implementation and experimental results have shown that
the method proposed in this paper shows a faster transient
response and a better disturbance rejection ability.
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